LECTURE 1
Analysis of Algorithms
•Insertion sort
•Asymptotic analysis
•Merge sort
•Recurrences
Prof. Charles E. Leiserson
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
Course information
1. | Staff | 8. | Course website |
2. | Distance learning | 9. | Extra help |
3. | Prerequisites | 10. | Registration |
4. | Lectures | 11. | Problem sets |
5. | Recitations | 12. | Describing algorithms |
6. | Handouts | 13. | Grading policy |
7. | Textbook | 14. | Collaboration policy |
September 7, 2005 | Introduction to Algorithms | L1.2 |
Analysis of algorithms
The theoretical study of computer-program performance and resource usage.
What’s more important than performance?
• modularity | • user-friendliness |
• correctness | • programmer time |
• maintainability | • simplicity |
• functionality | • extensibility |
• robustness | • reliability |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson | ||
September 7, 2005 | Introduction to Algorithms | L1.3 |
Why study algorithms and performance?
•Algorithms help us to understand scalability.
•Performance often draws the line between what is feasible and what is impossible.
•Algorithmic mathematics provides a languagefor talking about program behavior.
•Performance is the currency of computing.
•The lessons of program performance generalize to other computing resources.
•Speed is fun!
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.4 |
The problem of sorting
Input: sequence <a1, a2, …, an> of numbers.
Output: permutation <a'1, a'2, …, a'n>such that a'1 = a'2 = … = a'n .
Example:
Input: 8 2 4 9 3 6
Output: 2 3 4 6 8 9
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.5 |
Insertion sort | |||
INSERTION-SORT (A, n) | ⊳A[1 . . n] | ||
for j ←2 to n | |||
do key ←A[ j] | |||
i ←j – 1 | |||
“pseudocode” | |||
while i > 0 and A[i] > key | |||
do A[i+1] ←A[i] | |||
i ←i – 1 | |||
A[i+1] = key | |||
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.6 |
Insertion sort | |||||||
INSERTION-SORT (A, n) | ⊳A[1 . . n] | ||||||
for j ←2 to n | |||||||
do key ←A[ j] | |||||||
i ←j – 1 | |||||||
“pseudocode” | |||||||
while i > 0 and A[i] > key | |||||||
do A[i+1] ←A[i] | |||||||
i ←i – 1 | |||||||
A[i+1] = key | |||||||
1 | i | j | n | ||||
A: | |||||||
sorted | key | ||||||
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson |
September 7, 2005 | Introduction to Algorithms | L1.7 |
Example of insertion sort
8 2 4 9 3 6
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.8 |
Example of insertion sort
8 2 4 9 3 6
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.9 |
Example of insertion sort
8 | 2 | 4 | 9 | 3 | 6 |
2 | 8 | 4 | 9 | 3 | 6 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.10 |
Example of insertion sort
8 | 2 | 4 | 9 | 3 | 6 |
2 | 8 | 4 | 9 | 3 | 6 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.11 |
Example of insertion sort
8 | 2 | 4 | 9 | 3 | 6 |
2 | 8 | 4 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.12 |
Example of insertion sort
8 | 2 | 4 | 9 | 3 | 6 |
2 | 8 | 4 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.13 |
Example of insertion sort
8 | 2 | 4 | 9 | 3 | 6 |
2 | 8 | 4 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.14 |
Example of insertion sort
8 | 2 | 4 | 9 | 3 | 6 |
2 | 8 | 4 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.15 |
Example of insertion sort
8 | 2 | 4 | 9 | 3 | 6 |
2 | 8 | 4 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
2 | 3 | 4 | 8 | 9 | 6 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.16 |
Example of insertion sort
8 | 2 | 4 | 9 | 3 | 6 |
2 | 8 | 4 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
2 | 4 | 8 | 9 | 3 | 6 |
2 | 3 | 4 | 8 | 9 | 6 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.17 |
Example of insertion sort
8 | 2 | 4 | 9 | 3 | 6 | |
2 | 8 | 4 | 9 | 3 | 6 | |
2 | 4 | 8 | 9 | 3 | 6 | |
2 | 4 | 8 | 9 | 3 | 6 | |
2 | 3 | 4 | 8 | 9 | 6 | |
2 | 3 | 4 | 6 | 8 | 9 | done |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.18 |
Running time
•The running time depends on the input: an already sorted sequence is easier to sort.
•Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
•Generally, we seek upper bounds on the running time, because everybody likes a guarantee.
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.19 |
Kinds of analyses
Worst-case: (usually)
•T(n) = maximum time of algorithm on any input of size n.
Average-case: (sometimes)
•T(n) = expected time of algorithm over all inputs of size n.
•Need assumption of statistical distribution of inputs.
Best-case: (bogus)
• Cheat with a slow algorithm that works fast on some input.
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.20 |
Machine-independent time
What is insertion sort’s worst-case time?
•It depends on the speed of our computer:
•relative speed (on the same machine),
•absolute speed (on different machines).
BIG IDEA:
•Ignore machine-dependent constants.
•Look at growth of T(n) as n →8 .
“Asymptotic Analysis”
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.21 |
T-notation
Math:
T(g(n)) = { f (n) : there exist positive constants c1, c2, and
n0 such that 0 = c1 g(n) = f (n) = c2 g(n)for all n = n0 }
Engineering:
•Drop low-order terms; ignore leading constants.
•Example: 3n3 + 90n2 – 5n + 6046 = T(n3)
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.22 |
Asymptotic performance
When n gets large enough, a T(n2) algorithmalways beats a T(n3) algorithm.
• We shouldn’t ignore | |||
asymptotically slower | |||
algorithms, however. | |||
• Real-world design | |||
T(n) | situations often call for a | ||
careful balancing of | |||
engineering objectives. | |||
• Asymptotic analysis is a | |||
n | n0 | useful tool to help to | |
structure our thinking. | |||
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.23 |
Insertion sort analysis
Worst case: Input reverse sorted.
n
2 | |
T (n) = T( j) = T(n ) | [arithmetic series] |
j=2 |
Average case: All permutations equally likely.T (n) = n T( j / 2) = T(n2 )
j=2
Is insertion sort a fast sorting algorithm?
•Moderately so, for small n.
•Not at all, for large n.
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.24 |
Merge sort
MERGE-SORT A[1 . . n]
1.If n = 1, done.
2.Recursively sort A[ 1 . . n/2 ]and A[ n/2 +1 . . n ] .
3.“Merge” the 2 sorted lists.
Key subroutine: MERGE
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.25 |
Merging two sorted arrays
20 12
13 11
7 9
2 1
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.26 |
Merging two sorted arrays
20 12
13 11
7 9
2 1
1
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.27 |
Merging two sorted arrays
20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 |
7 | 9 | 7 | 9 |
2 | 1 | 2 |
1
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.28 |
Merging two sorted arrays
20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 |
7 | 9 | 7 | 9 |
2 | 1 | 2 |
1 | 2 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.29 |
Merging two sorted arrays
20 | 12 | 20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 | 13 | 11 |
7 | 9 | 7 | 9 | 7 | 9 |
2 | 1 | 2 |
1 | 2 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.30 |
Merging two sorted arrays
20 | 12 | 20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 | 13 | 11 |
7 | 9 | 7 | 9 | 7 | 9 |
2 | 1 | 2 |
1 | 2 | 7 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.31 |
Merging two sorted arrays
20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 |
7 | 9 | 7 | 9 | 7 | 9 | 9 | |
2 | 1 | 2 |
1 | 2 | 7 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.32 |
Merging two sorted arrays
20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 |
7 | 9 | 7 | 9 | 7 | 9 | 9 | |
2 | 1 | 2 |
1 | 2 | 7 | 9 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.33 |
Merging two sorted arrays
20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 |
7 | 9 | 7 | 9 | 7 | 9 | 9 | |||
2 | 1 | 2 |
1 | 2 | 7 | 9 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.34 |
Merging two sorted arrays
20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 |
7 | 9 | 7 | 9 | 7 | 9 | 9 | |||
2 | 1 | 2 |
1 | 2 | 7 | 9 | 11 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.35 |
Merging two sorted arrays
20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 | 13 | |
7 | 9 | 7 | 9 | 7 | 9 | 9 | |||||
2 | 1 | 2 |
1 | 2 | 7 | 9 | 11 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.36 |
Merging two sorted arrays
20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 | 13 | |
7 | 9 | 7 | 9 | 7 | 9 | 9 | |||||
2 | 1 | 2 |
1 | 2 | 7 | 9 | 11 | 12 |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.37 |
Merging two sorted arrays
20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 | 20 | 12 |
13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 | 13 | 11 | 13 | |
7 | 9 | 7 | 9 | 7 | 9 | 9 | |||||
2 | 1 | 2 |
1 | 2 | 7 | 9 | 11 | 12 |
Time = T(n) to merge a total of n elements (linear time).
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.38 |
Analyzing merge sort
T(n) | MERGE-SORT A[1 . . n] | |||
T(1) | 1. | If n = 1, done. | ||
2T(n/2) | ||||
Abuse | 2. | Recursively sort A[ 1 . . n/2 | ] | |
and A[ n/2 +1 . . n ] . | ||||
T(n) | ||||
3. | “Merge” the 2 sorted lists | |||
Sloppiness: Should be T( n/2 ) + T( n/2 ) , but it turns out not to matter asymptotically.
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.39 |
Recurrence for merge sort
T(n) =
T(1) if n = 1;
2T(n/2) + T(n) if n > 1.
•We shall usually omit stating the base case when T(n) = T(1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
•CLRS and Lecture 2 provide several ways to find a good upper bound on T(n).
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.40 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.41 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
T(n)
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.42 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
T(n/2) | T(n/2) |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.43 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn | |||
cn/2 | cn/2 | ||
T(n/4) | T(n/4) | T(n/4) | T(n/4) |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.44 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/2 | cn/2 | ||
cn/4 | cn/4 | cn/4 | cn/4 |
… | |||
T(1) | |||
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson |
September 7, 2005 | Introduction to Algorithms | L1.45 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn
cn/2 | cn/2 | |||
h = lg n | cn/4 | cn/4 | cn/4 | cn/4 |
… | ||||
T(1) | ||||
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson |
September 7, 2005 | Introduction to Algorithms | L1.46 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn cn
cn/2 | cn/2 | |||
h = lg n | cn/4 | cn/4 | cn/4 | cn/4 |
… | ||||
T(1) | ||||
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson |
September 7, 2005 | Introduction to Algorithms | L1.47 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.
cn cn
cn/2 | cn/2 | cn | ||
h = lg n | cn/4 | cn/4 | cn/4 | cn/4 |
… | ||||
T(1) | ||||
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson |
September 7, 2005 | Introduction to Algorithms | L1.48 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.cn cn
cn/2 | cn/2 | cn | |||
h = lg n | cn/4 | cn/4 | cn/4 | cn/4 | cn |
… | … | ||||
T(1) |
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.49 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.cn cn
cn/2 | cn/2 | cn | ||||||
h = lg n | cn/4 | cn/4 | cn/4 | cn/4 | cn | |||
… | … | |||||||
T(1) | #leaves = n | T(n) | ||||||
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.50 |
Recursion tree
Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.cn cn
cn/2 | cn/2 | cn | ||||||
h = lg n | cn/4 | cn/4 | cn/4 | cn/4 | cn | |||
… | … | |||||||
T(1) | #leaves = n | T(n) | ||||||
Total = T(n lg n) | ||||||||
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson |
September 7, 2005 | Introduction to Algorithms | L1.51 |
Conclusions
•T(n lg n) grows more slowly than T(n2).
•Therefore, merge sort asymptotically beats insertion sort in the worst case.
•In practice, merge sort beats insertion sort for n > 30 or so.
•Go test it out for yourself!
Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
September 7, 2005 | Introduction to Algorithms | L1.52 |